
ar
X

iv
:c

s.
IT

/0
41

00
40

 v
1

 1
8

O
ct

 2
00

4

IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004
2571

PAPER Special Section on Information Theory and Its Applications

Two Methods for Decreasing the Computational

Complexity of the MIMO ML Decoder

Takayuki FUKATANI†, Nonmember, Ryutaroh MATSUMOTO†a),
and Tomohiko UYEMATSU†, Members

SUMMARY We propose use of QR factorization with sort
and Dijkstra’s algorithm for decreasing the computational com-
plexity of the sphere decoder that is used for ML detection of
signals on the multi-antenna fading channel. QR factorization
with sort decreases the complexity of searching part of the de-
coder with small increase in the complexity required for prepro-
cessing part of the decoder. Dijkstra’s algorithm decreases the
complexity of searching part of the decoder with increase in the
storage complexity. The computer simulation demonstrates that
the complexity of the decoder is reduced by the proposed meth-
ods significantly.
key words: MIMO fading channel , maximum likelihood detec-

tion, sphere decoder, lattice

1. Introduction

In the multi-antenna mobile communication, it is well-
known that use of multiple transmit and receive an-
tennas linearly increases the channel capacity of a fre-
quency nonselective fading channel with the channel
state information (CSI) known at the receiver [1], [2].
In the case of the uncoded multi-antenna systems,
the computational complexity of the naive maximum-
likelihood (ML) decoding algorithm grows exponen-
tially with the number of transmit antennas, so we need
an efficient algorithm to implement ML decoding. On
the multi-antenna fading channel, if the receiver has
CSI, the receiver can compute the set of ideal received
signal points considering only influence of the fading
and disregarding influence of the additive noise. So
when the noise at each receive antenna is the additive
white Gaussian, to implement ML decoding we search
for the ideal received signal point closest to the actual
received signal point. By regarding the ideal received
points as lattice points, the ML decoding problem is re-
duced to the classical closest lattice point search prob-
lem. Fincke and Pohst proposed an efficient algorithm
for that problem [3], and recently it was applied to the
decoding problem and called sphere decoder (SD) [4].

SD can be divided into the two parts. The first
part computes QR factorization (or Cholesky factoriza-

Manuscript received January 16, 2004.
Manuscript revised April 14, 2004.
Final manuscript received June 7, 2004.

†The author are with the Department of Communica-
tions and Integrated Systems, Tokyo Institute of Technol-
ogy, Tokyo 152-8552 Japan.

a) E-mail: ryutaroh@it.ss.titech.ac.jp

tion) of the fading matrix. The second part computes
the ML estimate of transmitted signal from the received
signal and QR factorization. We call the first part pre-
processing part and the second part searching part. In
this paper we propose QR factorization with sort and
use of Dijkstra’s algorithm for decreasing the compu-
tational complexity of SD. QR factorization with sort
gives an efficient order of decisions on signal compo-
nents. It reduces the complexity of searching part with
increase in the complexity of preprocessing part. Dijk-
stra’s algorithm is an efficient algorithm used to solve
the shortest path problem in the graph. We apply this
algorithm to searching part. It reduces the complexity
of searching part with increase in the storage complex-
ity.

The QR factorization with sort modifies only pre-
processing part and use of Dijkstra’s algorithm modifies
only searching part. Thus these improvements are in-
dependent and can be used together or alone.

This paper is organized as follows: Section 2 intro-
duces the channel model of the multi-antenna fading
channel and shows how the original SD works. Sec-
tion 3 introduces QR factorization with sort and Sec-
tion 4 proposes application of Dijkstra’s algorithm to
SD. Section 5 shows the comparison between the com-
plexity of the original SD and that of SD using the
proposed methods by the computer simulations. These
simulations show that the proposed methods decrease
the complexity of a decoder significantly.

2. Original sphere decoder

2.1 Channel model

Suppose that we have the uncoded system with t trans-
mit antennas and r receive antennas, that the noise at
each receive antenna is the additive white Gaussian,
and that the receiver has CSI. At the transmitter, in-
formation sources are demultiplexed into t substreams,
and transmitted by transmit antennas. Let a be a (t×1)
vector consisting of complex envelopes of transmitted
signals with the signal constellation S, M the (r × t)
fading matrix whose (k,j) entry is a complex fading co-
efficient between j-th transmit antenna and k-th receive
antenna, ν a (r × 1) complex vector whose component
is noise at each receive antenna, and x a (r×1) complex

2572
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004

vector whose component is the received signal compo-
nent at each receive antenna. The model of this channel
is written as

x = Ma + ν (a ∈ St). (1)

On the channel described by Eq. (1), when the compo-
nents of ν are independent complex Gaussian random
variables, the ML decoding problem can be reduced to
the closest lattice point search problem for the set of
lattice points {Ma | a ∈ St} and a received signal point
x. See [4], [5] for details.

We also remark that when we use linear space-
time coding, the ML decoding problem is reduced to
the closest lattice point search problem by describing
the channel as Eq. (1) [6].

2.2 Algorithm

In this section, we show how the original SD works
when t ≤ r. Fincke and Pohst’s original method treats
real numbers, and we can treat complex numbers in the
almost same way [5].

To implement ML decoding on the channel de-
scribed by Eq. (1), we must compute the ML transmit
signal â = (â1, · · · , ât)

T equal to

argmin
â∈St

‖x− M â‖. (2)

To compute Eq. (2), SD considers a sphere with center
at the received signal in the complex Euclidean space.
If there are lattice points in the sphere, the closest point
is in the sphere. SD takes a suitable value as the radius
of sphere, and searches for lattice points in the sphere.

First we compute QR factorization of M and ob-
tain an upper triangular matrix R and a unitary matrix
Q with M = QR. Since Q is a unitary matrix,

‖x−M â‖2 = ‖Q∗x−Q∗M â‖2 = ‖Q∗x−Râ‖2.(3)

Let ρ = Q∗x = (ρ1, · · · , ρr)
T , C the square of suitable

radius and rij the (i, j) element of R. The lattice points
M â that satisfy

‖x − M â‖2 = ‖Râ − ρ‖2

=

t
∑

i=1

∣

∣

∣

∣

∣

∣

riiâi −

ρi −
t

∑

j=i+1

rij âj

∣

∣

∣

∣

∣

∣

2

+

r
∑

i=t+1

ρ2
i < C (4)

are in the sphere. Satisfying Eq. (4) is equivalent to
satisfying the following inequalities for all k = 1, · · · , t
:

∣

∣

∣

∣

∣

∣

rkk âk −

ρi −
t

∑

j=k+1

rkj âj

∣

∣

∣

∣

∣

∣

2

< C′ −

t
∑

i=k+1

∣

∣

∣

∣

∣

∣

riiâi −

ρi −
t

∑

j=i+1

rij âj

∣

∣

∣

∣

∣

∣

2

(5)

where C′ = C −
∑r

i=t+1 ρ2
i . SD computes â satisfying

Eq. (4) by deciding âi in order of i = t, · · · , 1 from Eq.
(5).

To simplify Eq. (5), we define Sk, and Dk as

Sk =

ρi −
t

∑

j=k+1

rkj âj

 /rkk (6)

Dk =

t
∑

i=k+1

∣

∣

∣

∣

∣

∣

riiâi −

ρi −
t

∑

j=i+1

rij âj

∣

∣

∣

∣

∣

∣

2

. (7)

Then Eq. (5) is written by Sk and Dk as

|âi − Si|
2

< (C′ − Di)/|rii|
2. (8)

The candidates of âi satisfying Eq. (8) are
in the circle with the center Si and the radius
√

(C′ − Di)/|rii|2 on the complex plane. If there is
no candidate of âi, SD goes back to decision on âi+1. If
there are some candidates, we must choose one of them.
To reduce the complexity of searching part, a method
starting with âi nearest to Si among the all candidates
is proposed in [7]. When SD only treats real numbers,
it is clear which âi is nearest to Si. But when SD
treats complex numbers, finding âi nearest to Si needs
to compute |âi − Si|

2
for all âi ∈ S and not necessarily

reduces the complexity. So we employ another method.
In Section 5, SD chooses âi in the increasing order of
|ℜ(âi − Si)| and, if there are two or more candidates
of âi with the same value of |ℜ(âi − Si)|, SD chooses
âi with a smaller |ℑ(âi − Si)|, where ℜ(·) denotes the
real part and ℑ(·) denotes the imaginary part. When
ℜ(âi − Si)

2 is larger than (C′−Di)/|rii|
2, SD concludes

that there is no âi in the circle any more.
When â satisfies all inequalities (8), SD concludes

that M â is a lattice point in the sphere. Then the new
radius is set to ‖M â − x‖ and SD repeats the same
operations until there is no lattice point in the sphere,
and the last point is the closest point. If there is no
lattice point in the sphere with the radius given first,
SD will declare the erasure of signal or increase the
radius.

3. QR factorization with sort

3.1 Changing the order of decisions on âi

In the previous section, we obtained the inequality with
each signal component âi. In searching part, the com-
putational complexity largely depends on the order of
decisions on âi. In this section, we consider an efficient
order of decisions on âi.

FUKATANI et al.: TWO METHODS FOR DECREASING THE COMPUTATIONAL COMPLEXITY OF THE MIMO ML DECODER
2573

For a permutation σ and M = (v1, · · · ,vt), Eq. (1)
is equivalently described by P = (vσ(1), · · · ,vσ(t)) and

p = (aσ(1), · · · , aσ(t))
T as

x = Pp + ν. (9)

When SD processes the channel described as Eq. (9),
the order of decisions on âi follows the order of com-
ponents of p. So we can change the order of decisions
on âi arbitrarily by σ. SD can obtain p̂ that is the ML
estimate of p, and one can get the ML estimate of the
original channel (1) from p̂ by the inverse permutation
σ−1.

Next we consider the efficient order of decisions on
âi. The number of candidates of âi satisfying Eq. (8)
is proportional to

(C′ − Di)/|rii|
2. (10)

Intuitively we can reduce the complexity of searching
part by changing the order of decisions on âi so that
the value of Eq. (10) is small for large i, because âi

are decided in order of i = t, · · · , 1. Because the value
of Eq. (10) is inversely proportional to |rii|2, we can
reduce the complexity by constructing the matrix R so
that |rii| takes the large value for large i.

Now we propose QR factorization with sort to com-
pute the efficient order of decisions on âi. QR fac-
torization computes rii in increasing order of i. QR
factorization with sort permutes columns of the factor-
ized matrix before each computation of rii such that
rii is minimized. QR factorization with sort is used
for decreasing the error probability of the nulling and
canceling decoder in [8]. In this paper, we use QR fac-
torization with sort for decreasing the complexity of
ML decoder without changing the error probability.

In [9], it is claimed that the order maximizing
min1≤i≤t |rii| is optimal for reducing the computational
complexity of searching part. But the computation of
this order requires QR factorizations t2/2 times. In
the mobile environment, the fading matrix M often
changes. So the computational complexity of prepro-
cessing part proposed in [9] is not negligible because
preprocessing part is computed whenever fading ma-
trix M changes. In [3], [9], it is also said that we can
reduce the complexity of SD by reordering decisions on
âi according to the norm of corresponding basis vec-
tors. In Section 5, we compare QR factorization with
sort and other methods by computer simulations.

3.2 Algorithm

In this subsection, we show how QR factorization with
sort works. QR factorization with sort gives a per-
mutation realizing an efficient order of decisions on âi

and QR factorization for the permuted matrix P in Eq.
(9). The following algorithm is almost the same as [8].
The method in [8] is based on Gram-Schmidt algorithm,

and our method is based on Householder method. It is
known that Householder method is numerically more
stable than Gram-Schmidt algrithm[10].

The ordinary QR factorization of M can be
sketched as follows: Compute a unitary matrix Q1 such
that the first column of Q1M is (r11, 0, · · · , 0)T . Let M2

be ((r − 1) × (t − 1)) submatrix of Q1M with the first
column and the first row of Q1M removed. Compute a
unitary matrix Q2 such that the first column of Q2M2 is
(r22, 0, · · · , 0)T . The computation process is recursively
repeated until i = t. See [10] for details.

We will describe QR factorization with sort. Ob-
serve that in the ordinary QR factorization r11 is equal
to the norm of the first column vector of M . In order
to minimize r11, we replace the first column of M with
the column with minimum norm. Let M ′ be the column
replaced version of M . Compute a unitary matrix Q′

1

such that the first column of Q′
1H

′ is (r11, 0, · · · , 0)T .
Let M̃2 be ((r − 1) × (t − 1)) submatrix of Q′

1M
′ with

the first column and the first row of Q′
1M

′ removed.
Replace the first column of M̃2 with the column with
minimum norm in M̃2. Let M ′

2 be the column replaced
version of M̃2. Compute a unitary matrix Q′

2 such that
the first column of Q′

2H
′
2 is (r22, 0, · · · , 0)T . The com-

putation process is recursively repeated until i = t.
With this process we get a QR factorization Q̂R̂

of the column permuted matrix P of M . If we apply
searching part in Section 2 to Q̂R̂, then we get more
efficiently the ML estimate p. The ML estimate of â

can be obtained by the inverse permutation.

4. Dijkstra’s algorithm

In this section we apply Dijkstra’s algorithm to search-
ing part to reduce the complexity of searching part with
increase in the storage complexity. Dijkstra’s algorithm
is an efficient algorithm to find the shortest path from a
point to a destination in a weighted directed graph [11].
In this algorithm, the vertices on the graph are searched
for in order of their distance from the departure.

The decisions on âi essentially constructs a tree
where nodes at k-th level are correspond to the candi-
dates of ât−k+1 [5], and the root is placed at the 0-th
level. Set the weight of the branch from the node âi to
its parent to

∣

∣

∣

∣

∣

∣

riiâi −

ρi −
t

∑

j=i+1

ri,j âj

∣

∣

∣

∣

∣

∣

2

= r2
ii|âi − Si|

2. (11)

Then the distance of node âi from the root is equal to
Di−1. The nodes having the same parent are arranged
in the increasing order of the distance from left to right.

If we use Dijkstra’s algorithm to find the shortest
path from the root to one of nodes at the bottom level,
we can get the node with the minimum D0 = ‖x−M â‖2

among all nodes at the bottom level and it corresponds
to the ML estimate.

2574
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004

We show Dijkstra’s algorithm.

1. Create an empty priority queue for nodes. The
priority is the distance from the root.

2. Insert the leftmost node at the first level into the
priority queue.

3. Select the node A having smallest distance in the
priority queue and remove it from the priority
queue. If the level of A is t, finish this algorithm.

4. Insert the leftmost A’s child node into the priority
queue.

5. Insert the right neighboring node of A into the pri-
ority queue.

6. Go back to Step 3

Because the node selected in Step 3 has the smaller
distance than the nodes selected later, the node at the
bottom level selected first has the minimum value of
D0 among all nodes at the bottom level.

In the sequel, we refer to SD not using Dijkstra’s
algorithm as SD, and SD using Dijkstra’s algorithm as
Dijkstra’s algorithm.

Figure 1 shows an example of the order of search
by Dijkstra’s algorithm and SD. The values in circles
show the distance from the root. The numbers in upper
rectangles show the order by Dijkstra’s algorithm and
the numbers in lower rectangles show the order by SD.
SD is the depth first search algorithm for a tree. In this
case, the number of searched nodes is 5 by Dijkstra’s
algorithm and is 8 by SD.

Dijkstra’s algorithm searches for only the nodes
whose distance is smaller than the minimum distance
of nodes at the bottom level, but SD searches for the
node whose distance is smaller than C and C must
be greater than the minimum distance of nodes at the
bottom level in order for ML detection succeed. So
the number of searched nodes of Dijkstra’s algorithm is
smaller than that of SD. However because we use the
priority queue in Dijkstra’s algorithm, the storage com-
plexity increases. In addition, Dikstra’s algorithm does
not require the radius of the sphere to be initially set,
and it always finds out ML estimate without retrying
to search for a lattice point with increased radius.

0.5 0.7

1.0 1.5

1.7 2.0 1.6 2.0

1.0

1.2 1.3

1
1

3
2 4

5

2
6

4
7

5
83

The distance from root

The order by Dikstra’s algorithm
The order by SD

root

level 1

level 2

level 3

Fig. 1 The order of search by Dijkstra’s algorithm and the orig-
inal SD

Arranging the nodes having the same parent ac-
cording to the distance needs to compute |âi − Si|2

of nodes. Instead of doing this, our algorithm consid-
ers the candidates of ℜ(ât−k+1) and the candidates of
ℑ(ât−k+1) separately in Section 5. Then the level of
tree is equal to 2t excluding the root, and arranging
the nodes having the same parent only needs to com-
pute |ℜ(âi) −ℜ(Si)| and |ℑ(âi) −ℑ(Si)|

5. Computer simulation

In this section, we show how much the complexity of
searching part is reduced by QR factorization with sort
and Dijkstra’s algorithm, the complexity of preprocess-
ing part is increased by QR factorization with sort, and
the storage complexity is increased by Dijkstra’s algo-
rithm over an uncoded multi-antenna fading channel.

The radius of sphere used by SD is defined so that

Pr{transmit point is in sphere} = Pr{C > |ν|2}

≈ 0.99 (12)

where C is the square of radius and ν is a vector whose
element is noise at each receive antenna [5]. When there
is no lattice point in sphere, we increase the radius to
C + 1, and continue until a lattice point is found.

5.1 The system model

We consider the following system model.

• The number of transmit antennas is equal to the
number of receive antennas.

• The fading coefficients obey the CN (0, 1) distribu-
tion.

• The signal constellation for each transmit antenna
is 64-QAM and all signals are drawn according to
the uniform i.i.d. distribution.

5.2 The computer simulations

In this subsection we show comparisons of complexities
of the proposed methods and other variants of SD. We
remark that all methods in this subsection are ML de-
coding and hence the error rates of these ML decoding
methods are the same. First we show the compari-
son of the complexities of SD not reordering decisions
on âi (SD), SD reordering decisions on âi according to
norms of basis vectors (Norm-SD) [3], [9], SD reorder-
ing decisions on âi so that min1≤i≤t |rii| is maximized
(Optimal-SD) [9] and SD with the QR factorization
with sort (QR sort-SD). The value of SNR is set to
26dB. In these simulations we use the average number
of real multiplications and divisions for each processing
as the measure of complexity, and in these simulations
we use the complex multiplications that needs three
real multiplications and seven real additions, and the
complex divisions that needs five real multiplications,
two real divisions, and nine real additions [12]. Figure

FUKATANI et al.: TWO METHODS FOR DECREASING THE COMPUTATIONAL COMPLEXITY OF THE MIMO ML DECODER
2575

2 shows the complexity of searching part and Figure
3 shows the complexity of preprocessing part. When
the number of transmit antennas is 8 the complexity
of searching part is reduced about 55 percent from the
original SD by QR factorization with sort. However
Figure 3 shows the complexity of preprocessing part
increases about 10 percent. Figure 4 shows the total
complexity of SD for 10 transmissions with the same
fading matrix. In this case the complexity of SD is re-
duced about 60 percent from the original SD by QR
factorization with sort.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 4 6 8 10 12T
he

 N
um

be
r

of
 M

ul
tip

lic
at

io
ns

 a
nd

 D
iv

is
io

ns

The Number of Transmit Antennas

SD
Norm-SD

Optimal-SD
QR sort-SD

Fig. 2 The complexity of searching part for each receiving
point

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 4 6 8 10 12T
he

 N
um

be
r

of
 M

ul
tip

lic
at

io
ns

 a
nd

 D
iv

is
io

ns

The Number of Transmit Antennas

Optimal-SD
QR sort-SD

Norm-SD
SD

Fig. 3 The complexity of preprocessing part for each fading
matrix

Next we show the comparison of the complexities
of SD (SD), Dijkstra’s algorithm (Dijkstra), and both
of them using QR factorization with sort (QR sort-SD,
QR sort+Dijkstra).

The number of antennas is set to 8. Figure 5
shows that the complexity of searching part and Figure

 0

 50000

 100000

 150000

 200000

 2 4 6 8 10 12T
he

 N
um

be
r

of
 M

ul
tip

lic
at

io
ns

 a
nd

 D
iv

is
io

ns

The Number of Transmit Antennas

Optimal-SD
SD

Norm-SD
QR sort-SD

Fig. 4 The complexity of SD for 10 transmissions with the
same fading matrix

6 shows the cumulative distribution of the size of prior-
ity queue with QR factorization with sort. When SNR
is 26dB, the complexity of searching part is reduced
about 25 percent from the original SD by Dijkstra’s
algorithm, and is reduced about 65 percent from the
original SD by combining QR factorization with sort
and Dijkstra’s algorithm. Figure 5 also shows that Di-
jkstra’s algorithm is much faster than SD when SNR is
low.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 20 21 22 23 24 25 26 27 28

M
ul

tip
lic

at
io

ns
 a

nd
 D

iv
is

io
ns

SNR(dB)

SD
Dijkstra

QR sort-SD
QR sort+Dijkstra

Fig. 5 The complexity of searching part for each receiving
point

6. Conclusion

We proposed the QR factorization with sort and use of
Dijkstra’s algorithm as methods for decreasing the com-
putational complexity of the sphere decoder. QR fac-
torization with sort reduces the complexity of searching
part of a decoder with little increase in the complexity
of preprocessing part of a decoder. Because the pre-
processing part is computed once for each fading ma-
trix and the increase in the complexity of preprocessing

2576
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004

 0

 20

 40

 60

 80

 100

 10 100 1000 10000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n(
%

)

The Size of Priority Queue

QR sort+Dijkstra SNR=28
QR sort+Dijkstra SNR=25
QR sort+Dijkstra SNR=22

Fig. 6 The cumulative distribution of the size of priority queue

part is little enough, the total complexity of SD can be
reduced. Dijkstra’s algorithm reduces the complexity of
searching part of a decoder with increase in the storage
complexity. By these reductions of the complexity, the
proposed methods enable us to implement ML decod-
ing for the multi-antenna system with a lager number
of transmit antennas.

References

[1] E. Telatar, “Capacity of multi-antenna Gaussian channels,”
Europ. Trans. Telecommun., vol.10, pp.585–595, Nov. 1999.

[2] G. J. Foschini, “Layered space-time architecture for wire-
less communication in a fading environment when using
multi-element antennas,” Bell Labs. Tech. J., vol.1, pp.41–
59, 1996.

[3] U. Fincke and M. Pohst, “Improved methods for calculating
vectors of short length in a lattice, including a complexity
analysis,” Math. Comp., vol.44, pp.436–471, Apr. 1985.

[4] E. Viterbo and J. Boutros, “A universal lattice code decoder
for fading channels,” IEEE Trans. Inform. Theory, vol.45,
no.5, pp.1639–1642, July 1999.

[5] B. Hassibi and H. Vikalo, “On the sphere decoding algo-
rithm: Part I and II,” http://www.systems.caltech.edu/
EE/Faculty/babak/pubs/sphere.html.

[6] M. O. Damen, A. Chkeif and J. C. Belfiore, “Lattice code
decoder for space-time codes,” IEEE Comm. Lett., vol.36,
no.5, pp.166–168, Jan. 2000.

[7] A. M. Chan and I. Lee, “A new reduced-complexity sphere
decoder for multiple antenna systems,” Proc. ICC, vol.1,
pp.460–464, Apr. 2002.

[8] D. Wubben, R. Bohnke, J. Rinas, V. Kuhn and K. D. Kam-
meyer, “Efficient algorithm for decoding layered space-time
codes,” Electron. Lett., vol.37, pp.1348–1350, Oct. 2001.

[9] M. O. Damen, H. E. Gamal and G. Caire, “On maximum-
likelihood detection and the search for the closest lattice
point,” IEEE Trans. Inform. Theory, vol.49, no.10, pp.2389-
2402, Oct. 2003.

[10] J. Stoer and R. Bulirsch, “Introduction to numerical anal-
ysis,” 2nd ed., Springer-Verlag, pp.190-197, 1983.

[11] A. V. Aho, J. E. Hopcroft and J. D. Ullman, “Data struc-
tures and algorithms,” Chapter 6.3, Addison-Wesley, Read-
ing Mass., 1983.

[12] D. E. Knuth, “The art of computer programming,” Vol.
2, 2nd ed., Problem 6.41, Addison-Wesley, Reading Mass.,

1981.

